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An analysis method is developed to study sound transmission characteristics of a thin
plate sti!ened by equally spaced line sti!eners. The dynamic equation that describes the
vibro-acoustic response of the system is derived by expanding the structural and acoustic
responses in terms of the space harmonics and by using the virtual energy method. The series
solution can be considered as the exact solution because the structural and
acoustic}structural coupling e!ects in the system are fully considered and the solution
converges. Parameter studies are conducted for major design parameters to understand the
characteristics of the system.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

1.1. OVERVIEW OF THE WORK

Thin plates sti!ened by parallel, equally spaced line sti!eners are commonly found in
aircraft and marine structures. In the low-frequency range in which the wavelength of the
#exural wave in the plate is much longer than the sti!ener spacing, such a structure can be
modelled as an orthotropic plate. At a relatively high frequency, at which the #exural
wavelength is comparable with sti!ener spacing, the structure has to be modelled as a panel
with a periodically deployed sti!ener. The structural response of the periodic structure to
harmonic excitations has been obtained by expanding it in terms of a series of space
harmonics by Mead et al. [1}3] to investigate structural responses of periodically sti!ened
beams and plates. This approach is also adopted in this work to solve the vibro-acoustic
equation of the sti!ened plate subjected to a plane wave input to calculate the transmission
loss (TL) through the structure. In the work by Mead et al., acoustic responses were
obtained based on the uncoupled model assuming that acoustic pressure excites the
structure, but the structural response does not induce further acoustic responses. Therefore,
the TL cannot be calculated by the uncoupled approach.

If a panel is sti!ened only in one direction, the two-dimensional, periodically sti!ened
panel may be modelled as a one-dimensional structure, essentially a periodically supported
beam as illustrated in Figure 1. The sti!ener can be represented as a combination of
a lumped mass (M), rotational (K

�
) and translational (K

�
) springs as shown in Figure 1. An

experimental or numerical method may be used to determine the spring rates. For example,
an FE analysis may be used to obtain the ratios between the force and the displacement,
which may be used as the linear spring rate.
022-460X/02/120349#18 $35.00/0 � 2002 Elsevier Science Ltd.



Figure 1. Schematic representation of a sti!ened panel.
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The system equation is developed by combining the wave equations in the incident and
transmitted side, the beam equation representing the plate and the e!ect of the lumpedmass
and springs representing the sti!ener, which are coupled with one another. A unique
analysis technique is developed to solve this vibro-acoustically coupled problem. Utilizing
the analysis result, characteristics of the sound transmission through a periodically sti!ened
plate are studied with special attention to the role of the sti!ener in the sound transmission.
The analysis procedure developed in this work, which is based on the space harmonic
method could be obviously extended to other types of structures. For example, sound
transmission characteristics through a cylindrical shell with a periodic ring sti!ener are
being studied by the authors using the approach in their concurrent work.

1.2. RELATED LITERATURE

The response of sti!ened plates excited by random pressure "elds can be obtained by the
normal mode expansion method [4}7]. Because the normal modes of the sti!ened plates
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must be determined, the method is con"ned to systems with relatively simple boundary
conditions. The structural wave propagation in periodically supported, undamped beams
and grillages was studied by Heckl [8]. It was shown that #exural waves can propagate
freely (without rapidly decaying) only in certain frequency bands. If the periodic structure is
highly damped, a wave approach yields the response muchmore readily as demonstrated by
Mead and Wilby [9]. A relatively simple formula was developed for the displacement,
curvature or stress at any point in the beam.

Mead and Pujara [1] developed a space harmonic method, in which the system response
is expended in terms of the harmonics of the sti!ener spacing. This method is attractive
because the sound radiation e!ects can be very easily incorporated as the transverse
dispalcement can be expressed as a series of sinusoidal travelling waves. In their work, the
panel is represented as a beam supported at regular intervals on elastic constraints that
oppose both transverse displacements and #exural slope changes. The response of the beam
subjected to a homogeneous random convected pressure "eld was solved, in which the
coupling between the acoustic system and the structural system is not considered (acoustic
pressure acts as structural excitation, but the e!ect of the structural response on the acoustic
system is not included). Structural responses of two-dimensional plates with orthogonal
sti!ening were investigated by Lin [5, 6], Mercer [7], Ford [10] and Mercer and Seavey
[11] assuming that the plate is simply supported in one direction.

Sound transmission problems were studied by some researchers, which however are
incomplete work [12] or are limited to low frequencies due to the related simpli"cations
[13]. Mathur et al. [12] proposed a theoretical model based on the space harmonic
approach to calculate the transmission loss through a periodically sti!ened panel and
sti!ened double-panel structures, however, without showing any numerical results. Schemes
to impose the structure}acoustic interactions and convergence of the solution are developed
in this work to make the space harmonic method work for these types of problems.
Desmet et al. [13] presented a method to "nd the sound transmission properties of "nite
double-panel partitions as low frequencies by adopting an experimental approach as well
as a theoretical method based on Dowell's modal coupling theory [14].

Bedair [15] and Molaghasemi [16] investigated the dynamic behavior (e.g., the
fundamental frequency of sti!ened plates) of plates sti!ened by a system of interconnected
beams or ribs. Wei et al. [17, 18] discussed the application of the Rayleigh}Ritz and
extended Rayleigh}Ritz energy methods to "nite periodic structures with sinusoidal
displacement functions and also studied the relations between his method for analyzing
"nite periodic structures and the theory of in"nite periodic structures.

2. FORMULATION OF THE SYSTEM EQUATION

Figure 1 illustrates the system to be studied, which is a typical set-up that de"nes the
transmission loss. A plane wave is incident to a #at panel with a periodic sti!ener, which
induces the re#ected wave, the panel motion, and the transmitted wave. The transmitted
side is assumed to be anechoic, therefore there is no re#ected wave on the transmitted
side.

Because of the periodic nature of the system, the system responses are also expected to be
periodic. Therefore, the transverse motion of the panel in Figure 1 can be expressed as
a series of space harmonics [1], i.e.:

=(x, t)"
��
�

����

A
�
e!j[(�#2n�)/¸]x ej�t, (1)



352 J.-H. LEE AND J. KIM
where =(x, t) is the panel transverse displacement, coe$cients A
�
can be considered as

modal amplitudes of the structure, ¸ is the spacing between sti!eners, and � is the
characteristic propagation constant which is de"ned as

�
¸

"k
�
(�)!j�(�), (2)

where � is the angular frequency, � is the phase attenuation coe$cient and k
�
is the

component of the wave number along the x-axis. Refering to Figure 1, component wave
numbers k

�
and k

�
can be obtained as

k
�
"k sin � cos�, k

�
"k sin � sin�, (3, 4)

where k"�/c is the wave number of the incident plane wave, c is the speed of sound, � and
� are the incidence angles of the plane wave in the x}y plane and x}z plane. The plane wave
is assumed to be incident along X}> plane, thus, i.e., �"0 in this study. Non-zero � cases,
which require a two-dimensional description for the panel wave in equation (1), are being
studied currently by the authors.

Notice that in equation (1) the structural wave is expressed as the sum of space harmonics
corresponding to n"0,$1,$2,$3,2, for the forward as well as backward waves,
which represent re#ections at the sti!ener joint. Each of the space harmonic does not satisfy
the boundary condition, however, their sum is forced to satisfy the boundary condition.

The velocity potential at a point in the incident side half space is composed of the
potentials of the incident and re#ected waves. The re#ected wave is also expected to be
periodic spatially; the wave velocity potential �

�
(x, y, t) is represented as

�
�
(x, y, t)"e!j((�/¸)x#k

��
y!�t)

#

��
�

����

B
�
e!j([(�#2n�)/¸]x!k

��
y!�t) , (5)

where the "rst term represents the potential of the incident wave and the second term in
a series form represents that of the re#ected wave. �

�
(x, y, t), the velocity potential of the

transmitted wave, is also spatially periodic, therefore expressed as

�
�
(x, y, t)"

��
�

����

C
�
e!j([(�#2n�)/¸]x#k

��
y!�t) . (6)

In equations (5) and (6), k
��

is the wave number in the y direction, which can be obtained
from the relationship

k
��

"��
�
c�

�
!�

�#2n�
¸ �

�
!k�

�
. (7)

Coe$cients B
�
and C

�
may be considered as modal amplitudes of the re#ected and

transmitted waves.
The modal amplitudes of the re#ected and transmitted waves can be related to those of

the structural wave by considering the boundary condition of the normal velocities [19]. At
y"0:

!

��
�

�y
"j�=, !

��
�

�y
"j�=. (8, 9)
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By substituting equations (1), (5) and (6) into equations (8) and (9), we obtain

�
�
�

����

A
�
e[(�#2n�)/¸]x

#

��
�

����

k
��
B

�
e[(�#2n�)/¸]x

!k
��
e!(�/¸)x

"0, (10)

�
�
�

����

A
�
e[(�#2n�)/¸]x

!

��
�

����

k
��
C

�
e[(�#2n�)/¸]x

"0. (11)

Because equations (10) and (11) should be valid at all values of x, the relationships between
the modal amplitudes are obtained. From equation (10),

B
�
"1!�

A
�

k
��

, when n"0, B
�
"!�

A
�

k
��

, when nO0. (12a, b)

From equation (11),

C
�
"�

A
�

k
��

. (13)

Therefore, if the coe$cients A
�
, modal amplitudes of the #exural wave in the panel, are

found, all other coe$cients are also found. The coe$cients A
�
can be found by solving the

system equation, which is derived by applying the principle of virtual work for one period of
the beam as proposed by Mead [1]. The principle states that the sum of the works done by
all elements in one period of the system must do no work when the system moves through
any one of the virtual displacements:

�="�A
�
e!j ([(�#2m�)/¸]x!�t). (14)

The virtual work of one period of a panel element is calculated at "rst. The equation of
motion of the beam representing the unit depth of the panel is [20]

D
d�=

dx�
!m

	
��=!j��

�
(�

�
!�

�
)"0, (15)

where m
	
is the panel mass per unit length and �

�
is the density of air, and D is the #exural

sti!ness of the panel de"ned as [20]

D"

Eh�

12(1!	�)
, (16a)

where h is the panel thickness, E and 	 are the in vacuo Young's modulus and the Poisson
ratio of the panel material. If necessary, structural damping of the panel material can be
introduced by taking D as

D"

Eh�

12(1!	�)
(1#j
), (16b)

where 
 is the loss factor of the beam material [21]. The structural loss factor 
 and the
phase attenuation coe$cient �(�) in equation (2) are closely related; however, they have to
be estimated separately by experiments because other conditions or parameters such as
geometric discontinuity also in#uence the latter. The last term in equation (15) represents
the acoustic and structural coupling e!ect. In equation (5), the equivalent force is applied to
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a unit length of the beam. Thus, the virtual work contributed by the panel can be
represented as

��
	
"�




���
�D

d�=

dx�
!m

	
��=!j��

�
(�

�
!�

�
)��=*, (17)

where �=* represents the complex conjugate of the virtual displacement in equation (14).
Therefore, by substituting equations (5) and (6) into equation (17), the virtual work done by
the panel is obtained as

��
	
"�A*

���



�

D
�
�

����
�
�#2n�

¸ �
�
A

�
e!j[(�#2n�)/¸]x ej[(�#2m�)/¸]x dx

!�



�

�
�

����

m
	
��A

�
e!j[(�#2n�)/¸]x ej[(�#2m�)/¸]xdx

!�



�

j��
��e!j (�/¸)x e!jk

��
y ej[(�#2m�)/¸]x

#

�
�

����

B
�
ejk

��
y e!j[(�#2n�)/¸]xej[(�#2m�)/¸]x

!

�
�

����

C
�
e!j[(�#2n�)/¸]x e!j[(�#2m�)/¸]x e!jk

��
y�dx�. (18)

The contribution to the virtual work by the translational spring is equal to

��
�
"K

�
=(0) �A*

�
"�A*

�
K

�

�
�

����

A
�
. (19)

The contribution to the virtual work by the rotational spring per one period of the system is
equal to

��
�
"jK

�
=�(0)�A*

��
�#2m�

¸ �"�A*
�
K

�

�
�

����

A
��

�#2n�
¸ ��

�#2m�
¸ �. (20)

The contribution of the lumped mass to the virtual work per one period of the system
becomes

��
�

"!��M=(0)�A*
�
"!��M�A*

�

�
�

����

A
�
. (21)

Finally, the virtual work principle requires that

��
	
#��

�
#��

�
#��

�
"0. (22)

Evaluating the integrals involved in ��
	
and noticing that the virtual displacement is

arbitrary, equation (22) results in the following equation:

�D�
�#2m�

¸ �
�
!m

	
���A�

#�
K

�
¸

!

��M

¸ �
�
�

����

A
�
#

K
�

¸

�
�

����

A
��

�#2n�
¸ ��

�#2m�
¸ �

"j��
�
[B

�
!C

�
#1], when m"0, (23a)

"j��
�
[B

�
!C

�
], when mO0. (23b)
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On substituting the relationships between the modal amplitudes de"ned in equations (12)
and (13), equation (23) becomes

�D�
�#2m�

¸ �
�
!m

	
��#

2�
�
��j

k
��
�A�

#�
K

�
¸

!

��M

¸ �
�
�

����

A
�
#

K
�

¸

�
�

����

A
��

�#2n�
¸ ��

�#2m�
¸ �

"2��
�
j, for m"0, (24a)

"0, for m"$1,$2,$3,2 . (24b)

Consideration of the virtual work in any other panel element would have yielded an
identical set of equations.

3. SOLUTION PROCEDURE

3.1. SOLUTION OF THE GOVERNING EQUATION

Equation (24) can be solved for the unknown coe$cients A
�
's, from which coe$cients

B
�
's and C

�
's can be found using equations (12) and (13). The number of terms to be used in

the calculation has to be decided after the convergence of the solution is veri"ed. For an
illustration purpose, we take the terms m"!2,!1, 0, 1, 2 in equation (24), which results
in "ve equations for the "ve unknowns A

��
, A

��
, A

�
, A

��
, A

��
. Then equation (24) can be

put into a matrix equation

A1 B1 C1 D1 E1

F1 G1 H1 I1

J1 K1 ¸1

M1 N1
Symmetric

O1 �
A

��
A

��
A

�
A

�
A

�
� "�

0

0

P1

0

0 � , (25)

where the matrix coe$cients are

A1"�D�
�#2(!2)�

¸ �
�
!m

	
��#

2���
�
j

k
���

�#

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(!2)�

¸ �
�
,

B1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(!1)�

¸ ��
�#2(!2)�

¸ �,

C1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(0)�

¸ ��
�#2(!2)�

¸ �,

D1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(1)�

¸ ��
�#2(!2)�

¸ �,

E1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(2)�

¸ ��
�#2(!2)�

¸ �,

F1"�D�
�#2(!1)�

¸ �
�
!m

	
��#

2���
�
j

k
���

�#
K

�
¸

!

��M

¸

#

K
�

¸ �
�#2(!1)�

¸ �
�
,



356 J.-H. LEE AND J. KIM
G1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(0)�

¸ ��
�#2(!1)�

¸ �,

H1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(1)�

¸ ��
�#2(!1)�

¸ �,

I1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(2)�

¸ ��
�#2(!1)�

¸ �,

J1"�D�
�#2(0)�

¸ �
�
!m

	
��#

2���
�
j

k
��
�#

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(0)�

¸ �
�
,

K1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(1)�

¸ ��
�#2(0)�

¸ �,

¸1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(2)�

¸ ��
�#2(0)�

¸ �,

M1"�D�
�#2(1)�

¸ �
�
!m

	
��#

2���
�
j

k
��
�#

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(1)�

¸ �
�
,

N1"

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(2)�

¸ ��
�#2(1)�

¸ �,

O1"�D�
�#2(2)�

¸ �
�
!m

	
��#

2j���
�

k
��
�#

K
�

¸

!

��M

¸

#

K
�

¸ �
�#2(2)�

¸ �
�
,

P1"j2��
�
.

3.2. THE TRANSMISSION LOSS (TL) OBTAINED FROM THE SOLUTION

The power transmission coe$cient that is a function of the angle of incidence (�) can be
obtained as

�(�)"	
I
�
I
�
	 , (26)

where I
�
and I

�
are incident and transmitted normal intensities, respectively, and are given

by

I
�
"

��
�
k
��

2
, I

�
"

��
�

2

�
�

����

C
�
�Re[k

��
]. (27, 28)

The TL is de"ned as the logarithm of the inverse of the power transmission coe$cient,
which will depend on the incident angle. To estimate the TL for random incidences, the
power transmission coe$cient �(�) is averaged to the Paris formula [22] to obtain the
averaged coe$cient �� :

�� "2 �
�
��

�

�(�)sin � cos �d�, (29)
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where �
��

is the limiting angle above which it is assumed that no sound is incident upon the
panel, which is taken as 723 as suggested by Mulholland et al. [23]. The actual integration
of equation (29) was carried out numerically using the step size of 23. The averaged TL is
obtained as

¹¸
���

"10 log
���

1

�� � . (30)

The averaged TLs of the unsti!ened and sti!ened panels are compared in a narrow band
format in Figure 2. The simulation conditions used to obtain Figure 2 are listed in Table 1.
The unsti!ened and sti!ened panels, on which a plane wave is incident with an angle of 453,
are compared in terms of the TL in a narrowband format as shown in Figure 3. It is seen
that the two TLs in Figures 2 and 3 show very similar characteristics. To save related
computational work, a single incidence angle of 453 is used for subsequent analyses. Also, in
Figures 2 and 3, the TLs calculated for the unsti!ened panel are compared with those
TABLE 1

Dimensions of the panel and simulation conditions

K
�

(N/m)
3)6�10	 	 0)33

¸

(mm)
200

K
�

(Nm/rad)
60

�
(kg/m�)

2700 � 13

E
(Pa)

7)1�10��
�
�

(kg/m�)
1)21

c
(m/s)

343

h
(mm)

1)27 � 0}723 � 03

M
(kg) 0 
 0)1

�/2�
(Hz) 10}3000

Figure 2. Comparison of the predicted averaged TLs between the sti!ened and the unsti!ened panels: **,
W/sti!ener; -------, W/O sti!ener.



Figure 3. Comparison of the predicted TLs between the sti!ened and the unsti!ened panels on which a plane
wave is incident with angle of 453: **, W/sti!ener; -------, W/O sti!ener.
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obtained for the sti!ened panel. It is seen that the e!ect of the sti!ener is pronounced in the
low-frequency range.

3.3. CONVERGENCE OF THE SOLUTION

Because the solutions are obtained in series forms, enough terms have to be used in the
calculation to make the solutions converge. Once the solution converges at a given
frequency, it can be assumed to converge for all frequencies lower than that. Therefore, the
necessary number of terms is determined at the highest frequency of interest. A simple
algorithm is used where the TLs are calculated at the highest frequency of interest, adding
one term to the assumed expansion solution at a time. When the TLs calculated at two
successive calculations are within a pre-set error bound (0)01 dB in this work), the solution
is considered to have converged. The number of coe$cients found in this way is used to
calculate TL at all other frequencies below this highest frequency of interest.

Figure 4 shows as to how the calculated TL changes as the number of coe$cients
increases at the driving frequency of 3000 Hz. The same data shown in Table 1 is used for
the sti!ened panel but a single incidence angle of 303 is used. From the "gure, 21 coe$cients
(n"!10 to 10) are enough to provide a converged solution at 3000 Hz.

4. PARAMETER STUDIES

The basic panel dimensions and simulation conditions used in the study are the same as
those listed in Table 1, obviously, except for the parameter to be studied.

4.1. PARAMETERS RELATED TO MODELLING

4.1.1. E+ect of the incidence angle

The TLs calculated for three di!erent incident angles (30, 45, 603) are plotted in Figure 5,
which indicates that the transmitted power slightly decreases (TL increases) with decreasing



Figure 4. Coe$cient covergence diagram for the sti!ened panel (t"1)27 mm) at 3000 Hz.

Figure 5. TL curves for the sti!ened panel with respect to incidence angle: **, 303; -------, 453; } )} ) }, 603.
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incidence angle �. Because the qualitative aspect of the solution does not change for
di!erent angles, the incident angle of 453 is used for all subsequent calculations, which
reduces the related computation time substantially.

4.1.2. E+ect of the phase attenuation

Figure 6 compares the TLs calculated for three di!erent phase attenuation parameters,
03, 13 and 103, which are chosen within a physically reasonable range. Notice that the choice
of the phase attenuation coe$cient in#uences the solution in a noticeable scale only in the
low-frequency range, below 100 Hz in this case. The comparison suggests that the use of an
arbitrarily small value for the attenuation angle will be acceptable for most purposes.



Figure 6. TL curves for the sti!ened panel with respect to phase attenuation: **, �"03; -------, �"13;
} ) } )}, �"103.

Figure 7. TL curves for the sti!ened panel with respect to loss factor: **, 
"0; -------, 
"0)1; } )} ) },

"0)2; ****, W/O sti!ener (
"0).
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Because the phase attenuation parameter � is di$cult to estimate, 13 is used as the angle in
subsequent calculations.

4.1.3. ¸oss factor

The loss factor represents the structural damping of the panel, and is also di$cult to
estimate accurately. Figure 7 compares the TLs obtained for three loss factors for the
sti!ened panel and zero loss factor for the unsti!ened panel. Figure 7 shows sound
transmission loss curve, of the sti!ened panel and of the unsti!ened counterpart, in which
the in#uence of damping can clearly be seen [24]. From the result, it can be inferred that



Figure 8. TL curves for the sti!ened panel with respect to sti!ener mass (K
�
"3)6�10	 N/m):**, 0%; -------,

10%; } ) } ) }, 100%; ****, 200%.
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a damping treatment such as a coating is a good option for the sti!ened panel to increase
the TL in any signi"cant scale. In all subsequent studies, 0)1 is used as the loss factor.

Notice that the e!ect of the sti!ening features is detrimental to the sound transmission
characteristics of the sti!ened panel when compared with an unsti!ened panel. One way of
qualitatively understanding this feature is to consider that the wave re#ection produced by
the sti!eners changes the dispersion relationship in such a way that free waves having wave
number components of supersonic phase velocity can propagate at frequencies below the
unsti!ened panel critical frequency, these components may cause the panel to be excited in
a coincidental manner by incident sound waves at frequencies below critical. In practice, the
e!ect on sound transmission is as though the critical frequency had been lowered by one or
two octaves, the degree of change being dependent upon the spacing and sti!ness
(translational and rotational) of the sti!eners [24].

4.1.4. Sti+ener mass e+ects

TLs calculated when the sti!ener has 0, 10, 100 and 200% of the mass of the panel are
plotted in Figure 8. The "gure indicates that the mass e!ect caused by the sti!ener has
virtually no in#uence on the TL in the case studied. Figure 9 shows the same comparison,
using the TLs calculated for four di!erent sti!ener masses but reducing the translational
sti!ness of the sti!ener drastically, from K

�
"3)6�10	 to 1�10
 N/m. This indicates that

the sti!ener mass has to be considered only when the translational spring is very soft, which
is not a practical case. Generally, it is considered that the mass e!ect of the sti!ener will not
have to be considered in the analysis.

4.2. DESIGN PARAMETERS

4.2.1. Materials

Figure 10 shows the e!ect of the material on the TL of the panel. Materials chosen for the
comparison are steel, aluminum and brass as shown in Table 2. The "gure shows that the
TL of the brass is comparable with that of the steel in the middle frequencies ranging



Figure 9. TL curves for the sti!ened panel with respect to sti!ener mass (K
�
"1)0�10
 N/m):**, 0%; -------,

10%; } ) } ) }, 100%; steel; } } } }, 200%.

Figure 10. TL curves for the sti!ened panel with respect to plate material:**, aluminum; -------, steel; } )} ) },
brass.

TABLE 2

Material properties of the sti+ened panel

Steel Aluminum Brass

Density

(� :kg/m�)
7750 2700 8500

Young's modulus

(E: Pa)
1)9�10�� 0)71�10�� 1)04�10��

The Poisson ratio

(	)
0)3 0)33 0)37
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Figure 11. TL curves for the sti!ened panel with respect to thickness of the panel:**, t"0)645 mm; -------,
t"1)27 mm; } ) } ) }, t"2)54 mm.
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from 200 Hz to 2 kHz. Above 2 kHz, the brass will be the most e!ective material in the
high-frequency range. This is as expected because the density of the brass is larger which
makes it most e!ective in the mass-controlled high-frequency range. The "gure also shows
that aluminum, which has the lowest sti!ness, is the least e!ective in the low-frequency
range, which is again as expected because the low-frequency range is controlled by the
sti!ness. This type of comparison will be useful in practice when the basic design of a certain
structure is to be decided.

4.2.2. Panel thickness

Figure 11 shows the e!ect of the panel thickness on the TL. Changing the thickness has a
broadband e!ect on TL over the entire range of the frequency. In general, TL increases more
in the low-frequency range, or the sti!ness-controlled region, and less in the high-frequency
range, or the mass-controlled region. As in the study on the e!ect of the sti!ener, the structural
enhancement is most e!ective in the low-frequency range. In the high-frequency range, other
means such as the use of absorbing materials may be a more e!ective solution.

4.2.3. Sti+ener spacing

As shown in Figure 12, smaller sti!ener spacing increases the TL substantially in the
low-frequency range, however, it obviously deteriorates the sound transmission in an
overall sense. It can be qualitatively explained by considering that the panel consists of an
assemblage of smaller panels. The transmission loss of small panels has been shown to be
lower than that of the larger panels of the same material. Hence, the transmission loss of the
unsti!ened panel exceeds that of the assemblage. The sti!ener spacing has to be determined
by considering a tradeo! between an overall performance and sound transmission
characteristics in the low-frequency range.

4.2.4. Sti+ness of the sti+ener

Figure 13 shows the e!ect of the rotational sti!ness. The comparison was made for a very
wide range of rotational sti!ness, while the translational sti!ness is set to zero. The "gure
suggests that the rotational spring has almost no in#uence on the sound transmission



Figure 12. TL curves for the sti!ened panel with respect to sti!ener spacing: **, ¸"100 mm; -------
,¸"200 mm; } ) } ) }, ¸"400 mm; ****, W/O sti!ener.

Figure 13. TL curves for the sti!ened panel with respect to rotational sti!ness of the sti!ener: *�*, K
�
"

0 Nm/rad; **, K
�
"1)2�10� Nm/rad; -------, K

�
"1)2�10� Nm/rad; * )* )*, K

�
"1)2�10
 Nm/rad.
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except in the very low-frequency range. This is somewhat expected because the sound is
induced by the transverse motion of the panel.

Figure 14 shows the e!ect of the translational spring sti!ness when the sti!ener spacing is
¸"200 mm. As expected again, the e!ect is mostly in the low-frequency range. Also, the
e!ect of the increase of this parameter becomes saturated after it exceeds a value that is
enough to make the spring virtually a "xed support (7)1�10� N/m in this case).

5. CONCLUSIONS

An exact analysis procedure is developed to calculate the sound transmission through an
in"nitely long elastic panel sti!ened only in one direction. The sti!ener is modelled as a set



Figure 14. TL curves for the sti!ened panel with respect to translational sti!ness of the sti!ener: *�*,
K

�
"0 N/m; **, K

�
"7)1�10
 N/m; -------, K

�
"7)1�10� Nm/rad; * )* )*, K

�
"7)1�10� N/m;

K
�
"3)6�10	 N/m.
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of lumped mass, and rotational and translational sti!nesses attached to the panel. The
dynamic equation that describes vibro-acoustic responses of the system is derived using
the space harmonic approach and the virtual energy principle. The interaction between the
sti!ener and the panel, and the interaction between the panel and the acoustic media are
fully considered in the derivation. A unique solution procedure is developed by relating the
acoustic and structural space harmonic amplitudes utilizing the boundary conditions
between the plate and the acoustic media. The solution is obtained as a truncated series of
the assumed modes by solving a set of linear equations. A scheme to ensure the convergence
of the solution is included in the solution procedure, therefore the series solution can be
considered as the exact solution, which is considered to be the "rst exact analytical solution
for this type of a problem.

Taking advantage of having an exact solution procedure, the performance of the sti!ened
panel as an acoustic barrier is studied in terms of the TL. Parameter studies are conducted
for the parameters that a designer can practically choose, such as the panel material,
sti!ener spacing, size of the sti!ener, and thickness of the sti!ened panel. The parameter
study also demonstrates the value of the analysis developed in this work as a design tool.
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